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Abstract This project targets mathematical and computational underpinnings of a
predictive capability for high performance, nano-composite materials. The overall goal is
to develop theory, models, and numerical algorithms for the processing pipeline, starting
with composite information, through flow processing, and finally to multi-functional
property characterization. The materials we consider are nano-rods and nano-clays in
acqueous and polymeric solvents, which are technology targets for high performance
properties ranging from electrical, thermal, mechanical, and permeability. We have made
progress in the theory and models for flow processing and effective properties, in the
analysis, numerical algorithms and simulations of the models, and in scientific
understanding of nano-composite materials.

The theoretical basis for flow processing of nano-composites is the nematic or polymeric
liquid crystal theory of Doi, Hess, Marrucci and Greco. The theory applies to nano-scale
rods and platelets (macromolecules) in viscous solvents. (Forest and Wang have
published extensions of the theory and models to include polymeric solvents during this
contract period.) Extensions to flexible and more geometrically complex elements are
challenging, and under study. Post-processing predictions to infer multi-functional
properties is based on homogenization theory, where the information from flow
processing fits directly into the homogenization results for effective property tensors. We
have predicted effective thermal, electrical, permeability, and mechanical property
tensors, with only electrical properties published so far, in collaboration with Rob Lipton,
LSU. Results on mechanical properties were submitted just this month.

During and as a consequence of flow processing, the nano-particle ensemble is
theoretically described in terms of an orientational probability distribution function
(PDF). In extension-dominated flow, such as fiber processing, features of the PDF have
been shown by the authors in previous contracts to be predictable and controllable. In
film and mold-filling processing, anomalous dynamical responses of the nano-ensemble
and generation of spatial gradient morphology have been the subject of intense
experimental, theoretical and computational scrutiny for the past two decadesl The
theory has simply not been available to make predictions of relevance to technology, and
in particular, the mathematical community has only recently engaged these challenges.
Forest and collaborators have made significant progress on a controlled understanding of
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model experiments in which the flow is shear-dominated, representative of film and mold
processing. We have further made significant advances in mapping flow-induced PDFs
of the nano-ensemble to effective properties.

Specifically, we build theory, models, and simulations that provide the link from control
parameters: composition (viscous solution or polymer matrix plus nano-elements),
processing flow type and rates, and confinement conditions (device lengthscales as well
as solid boundaries); to multi-functional material properties.

A significant obstruction in the production pipeline is control over anisotropy and
heterogeneity of performance properties in nano-composites, which arise on lengthscales
between the molecular and device scales. These property features are clearly a
consequence of the orientational morphology of the anisotropic nano-inclusions, which
are typically long rod-like or thin platelet molecules with aspect ratios between 20 and
2000. At present, these anisotropic ensembles and spatial morphologies of the nano-
inclusions, and subsequently of the effective properties of materials, are viewed as
problematic. However, these features are only possible in soft matter materials, and offer
potential keys to novel materials. We currently have theory, modeling, and simulation
predictions with a host of the relevant chemical composition and processing physics built
in. Other physics and chemistry are not on solid theoretical foundation yet, such as non-
uniform mixing of the nano-elements and a polymeric solvent rather than a viscous
liquid, and we have made some progress in incorporating them into the framework.

In our approach, the design and control pipeline is divided into a sequence of
fundamental theory and computation problems:

" Molecular potentials and process controls determine the micron-scale, physical
structures due to molecular orientational distributions generated in films and molds,
as well as stored elastic stresses in these viscoelastic composites. The mathematical
theory and models, analytical solution methods, and numerical simulation tools for
these orientational anisotropy and structure properties and associated stored stresses
are the central components of our research over the past three years.

" Once the micron-scale molecular morphology is characterized, either as a numerical
database, analytical scaling properties, or an experimentally determined dataset, the
next challenge to mathematics and computation is the determination of effective
material performance properties. Since there are millions of molecules in a cubic
micron, clearly one must develop scale-up methods based on the molecular
orientational distribution, molecule properties, the solvent or matrix properties, and
the geometry of the material (film thickness, mold shape). Here we have teamed with
Robert Lipton, Louisiana State University, to marry the results of composite
homogenization theory with our molecular structure morphology results. This gives
the effective anisotropic composite property tensor, parametrized by composition and
processing parameters.



"* The last stage in the pipeline is a direct solve for the performance features of the film,
using the mechanical, thermal, electric, piezoelectric, permeability property tensor(s)
of the nano-composite, which are the variable, anisotropic coefficients in an elliptic,
second- or fourth-order operator, together with realistic boundary conditions the
materials are exposed to during performance conditions. We have only begun to run
simulations for this purpose.

" Finally, a control wrapper is necessary that measures performance properties,
evaluates them based on a cost functional which penalizes departure from desired
properties, and then gives feedback to which composition and processing parameters
can minimize cost and thereby achieve desirable performance features. This
capability is realistic within the next 5 years.
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